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Abstract. We present leakiEst, a tool that estimates how much infor-
mation leaks from systems. To use leakiEst, an analyst must run a system
with a range of secret values and record the outputs that may be exposed
to an attacker. Our tool then estimates the amount of information leaked
from the secret values to the observable outputs of the system. Impor-
tantly, our tool calculates the confidence intervals for these estimates,
and tests whether they represent real evidence of an information leak in
the system. leakiEst is freely available and has been used to verify the
security of a range of real-world systems, including e-passports and Tor.

Introduction. Information leakage occurs when something about a system’s
secret data can be deduced from observing its public outputs. Not all information
leakage is serious: many retailers’ billing systems readily “leak” the last four
digits of a credit card number, and password-checking functions “leak” some
information about a secret password in response to an incorrect guess (e.g., that
the guess is not the password). Information leakage is therefore quantitative and
it is important to be able to answer the question “how much information does
a system leak?”. Information theory is a useful framework for quantifying these
leaks in systems (see e.g. [9]), and two particular measures, mutual information
and min-entropy leakage, place useful bounds on an attacker’s ability to guess
the secrets from the public outputs.

Our tool, leakiEst, estimates these leakage measures from datasets containing
secrets and public outputs that are generated from trial runs of a system. Its
methodology is based on our previous work that provides rigorous verification
methods for estimating information leakage [3,4]; it performs statistical tests
to distinguish an insecure system with a very small information leak from a
secure one with no leaks. This is similar to detecting a correlation between
two random variables, a well-investigated problem, and we compare leakiEst’s
performance to that of existing statistical tests. If a leak is found, leakiEst can
display the conditional probability of observing each output from the system
given a particular secret, which may be used to derive a concrete attack against
the system.

There are several tools that calculate the amount of information that leaks
from a program (e.g., [7,2]). These tools provide tight bounds, but require ac-
cess to the source code of the program and a formalism that is powerful enough
to model the underlying system. These requirements are often prohibitive, and
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prevent these tools from being used in the case studies below. By estimating
leakage based on trial runs of a system, we trade precise leakage calculations for
the ability to detect leaks in complex, real-world systems. Other tools, such as
Weka [6], can estimate the mutual information of random variables, but do not
calculate the confidence interval for their estimates, nor do they test for com-
patibility with zero leakage; it is therefore difficult to ensure that the estimates
produced by these other tools are meaningful.

leakiEst, its documentation and sample datasets are available at [1].

Estimating Information Leakage. leakiEst can analyse data collected from
systems that contain a secret value, and whose observable behaviour is proba-
bilistic and possibly affected by the secret. We assume that there is a probability
distribution X on the secret values and another probability distribution Y on
the public outputs. The system is defined by the likelihood of observing each
possible output given each possible secret, i.e., by the conditional probability
distribution PY |X . As an example we consider a Java program in which two
random integers between 1 and 10 are generated sequentially; the first is visible
to an attacker, and the second must be kept secret. One potential flaw would be
the use of the Java API’s cryptographically weak Random class for pseudorandom
number generation, rather than the stronger SecureRandom class: if Random were
used, the value of the second integer may be related to the first, which would
constitute an information leak. In this case, there would be a correlation between
Y , the probability distribution on the integer that the attacker observes, and X,
the distribution on the secret integer generated afterwards. X and Y ’s mutual
information, or the min-entropy leakage from X to Y , defines how difficult it is
for the attacker to guess the secret integer from the observable integer.

leakiEst estimates the magnitude of information leaks solely from trial runs
of a system: a user must first run a system many times with a range of possible
secret values and record the observed outputs to create a dataset that can be
processed by leakiEst. This system-agnostic approach offers the greatest flexibil-
ity to users of the tool, and we note that for particular types of systems (e.g.,
RFID cards, web traffic, or Java programs) it would be possible to build a frame-
work to automatically generate an appropriate dataset; we provide a Java API
so leakiEst’s functionality can easily be integrated with other tools.

Given a dataset, the tool estimates the conditional probability distribution
P̂Y |X of the system and implements tests we have proposed in previous work [3,4].
In [3] we calculate the bias and distribution that the repeated estimates of dis-
crete mutual information will follow in terms of the true mutual information.
This allows us to estimate a confidence interval, and therefore test whether the
apparent leakage indicates a statistically significant information leak in the sys-
tem or whether it is in fact consistent with zero leakage. The estimates are
non-parametric; i.e., they do not assume that secrets and outputs fit any partic-
ular distribution. In [4] we extend this technique to cover estimates of continuous
mutual information using kernel density estimation, allowing leakiEst to estimate
leakage from systems with continuous outputs.
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Fig. 1. A depiction of leakiEst’s output for the Java Random and SecureRandom sample
programs. The graphs’ data sources are produced by leakiEst’s -csv option, which
calculates leakage estimates at user-defined intervals in a dataset and writes them to
a CSV file.

Two further novel features of our tool are the calculation of an upper bound
on the expected mutual information for systems containing no information leaks
and the calculation of confidence intervals. It is these features that allow us to
interpret leakiEst’s output in a meaningful way. Fig. 1 depicts leakiEst’s output for
datasets generated by programs that utilise the Java Random and SecureRandom

classes in the manner described earlier (their source code is available at [1]).
Each graph denotes both the observed and corrected mutual information of the
secret values and public outputs in the dataset, with the x-axis denoting the
number of observations that produce those estimates. Other tools (e.g., Weka)
can calculate the uncorrected observed mutual information value, but this is of
limited use in isolation, as it can be difficult to tell whether that value represents
a true information leak or is just noise in the data.

The dashed line shows the 95% upper bound on the measurement expected
if the true mutual information were zero. For values of x > 150, when the
observed mutual information falls below the upper bound for zero leakage, the
left-hand graph provides clear evidence that there is an information leak from
the first random integer to the second when the Random class is used to generate
random numbers. For cases where the mutual information is not zero (i.e., there
is a leak), [3] provides a prediction of the bias and variance of the estimate.
This allows us to make a prediction of the true mutual information, labelled as
“corrected mutual information” in both graphs. This quantifies the information
leakage (approximately 0.5 bits) accurately, even for a very small number of
observations. The right-hand graph shows that when SecureRandom is used to
generate random numbers the mutual information is always below the expected
confidence interval for zero leakage, therefore there is no evidence of leakage
from the first random integer to the second. While this does not guarantee that
SecureRandom is secure (and for much larger ranges of numbers it may not
be), the data processing inequality guarantees that an attacker learns nothing
statistically significant from this particular dataset.
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Our estimates make the assumption that terms of the order (#samples)−2

are small, but for a large number of secrets and outputs and a small number of
samples this may not be the case. For instance, when the product of the number
of secrets and outputs is in the hundreds, tens of thousands of samples may be
required for reliable results. leakiEst can test whether enough samples have been
provided and warn the user if more are required.

leakiEst uses a new technique [1] to calculate the confidence interval for the
estimated min-entropy leakage, which measures the vulnerability of secrets to
single-attempt guessing attacks.

The Tool. leakiEst is developed in Java and may be used as either a Java API
or as a standalone JAR file that can be invoked from the command line, so
it can be integrated into the development workflow of software written in any
programming language; it is a suitable component of system testing (to uncover
new information leaks) as well as regression testing (to ensure that previously-
discovered leaks have not been reintroduced). leakiEst’s Java API also exposes
common information theory and statistical functions that developers may find
useful. We chose Java, as opposed to (e.g.) MATLAB or R, to make the tool
more accessible to non-specialists and to simplify standalone execution.

The simplest datasets processed by leakiEst are text files with lines of the
form ("secret","output") describing a single trial run of the system. From
this input, the tool calculates the conditional probability distribution P̂Y |X ,

estimates min-entropy leakage and mutual information using P̂Y |X , calculates
the confidence intervals, and (for discrete mutual information) performs tests
on the estimate in search of statistical evidence of non-zero leakage. For more
complex systems (e.g., those containing multi-part secrets or producing multiple
outputs per secret), leakiEst can process datasets recorded in Weka’s ARFF file
format. While each line of the file still describes a single trial run, the format
of each line is more structured, with named “attributes” allowing the system’s
various secrets and outputs to be distinguished. Command-line options can be
supplied to instruct leakiEst to treat arbitrary sets of attributes as secrets or
outputs. Given an ARFF file, the tool calculates the mutual information and
min-entropy leakage confidence intervals for the specified secret and each of the
outputs individually. Another function orders all of the outputs by the amount
of information they leak, allowing users to focus their attention on minimising
leakage caused by particular outputs.

Scalability. leakiEst generates the conditional probability matrix for P̂Y |X for
a given list of observations. The tool updates the matrix in-place for each ob-
servation read, meaning it scales well for datasets containing a large number
of observations: our Random and SecureRandom datasets, each containing 500
million observations forming 10 × 10 matrices, can be analysed in 3 minutes on
a modern desktop computer. The tool scales less well for datasets containing a
large number of unique secrets and outputs (which result in matrices with larger
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Table 1. The p-values of leakiEst and other non-parametric tests when applied to an
e-passport dataset containing 500 observations

Nationality leakiEst KS test CVM test AD test BWS test

British 0 0 0 0 0
Irish 0 0.001 0 0 0
Greek 0.075 0.718 0.544 0.367 0.408
German 0 0.257 0.743 0.302 0.271

dimensions), but is nevertheless able to estimate leakage in many real-world sce-
narios: systems where the secret is a 4-digit PIN and the output is a binary value
(i.e., a ≈ 213×2 matrix) can be analysed in under 10 seconds, and systems where
the secret is 19 bits of a key and the output is a binary value (i.e., a 219 × 2
matrix) can be analysed in a day.

Case Study: Fixing an e-Passport Traceability Attack. The RFID chip
in e-passports is designed to be untraceable; i.e., without knowing the secret key
for a passport, it should be impossible to distinguish it from another passport
across sessions. In [4,5] we observed that e-passports fail to achieve this goal due
to a poorly-implemented MAC check: passports take longer to reject replayed
messages. This means that a single message can be used to test for the presence
of a particular passport. Here, the secret is a binary value indicating whether the
passport is the one the attacker is attempting to trace, and the output is the time
taken for the passport to reply. We collected timing data from an e-passport and
analysed it with leakiEst, which clearly detects the presence of an information
leak from a dataset containing 100 observations. Attempting to fix the leak, we
developed a variant of the e-passport protocol that pads the time delays so that
the average response time is equal in all cases [4]. leakiEst still indicated the
presence of a small information leak: while the average times are the same, it
appears that the actual time measurements come from a different distribution.
After modifying the protocol to continue processing a message even when the
MAC check fails, and only reject it at the end of the protocol, leakiEst indicates
that it is free from leaks.

In cases where the secret is a single binary value, a number of existing non-
parametric tests can be used to test whether two samples originate from the
same distribution. The most popular of these are the Kolmogorov-Smirnov (KS),
Baumgartner-Weiß-Schindler (BWS), Anderson-Darling (AD) and Cramér-von
Mises (CVM) tests. Table 1 compares the p-values of these tests when applied
to 500 observations of the time-padded protocol variant for e-passports from a
range of countries that all implement different variations of the protocol. The
p-value indicates the proportion of tests that failed to detect the leak, so the
table shows that leakiEst detects leaks more reliably than the other tests for
datasets of this size.
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Case Study: Fingerprinting Tor Traffic. Tor is an anonymity system that
uses encryption and onion routing to disguise users’ network traffic. Traffic is
encrypted before it leaves the user’s node, but an intermediary can still infer
information about the web sites a user is requesting based on characteristics of
the encrypted traffic: the time taken to respond to the request, the number of
packets, the packet sizes, the number of “spikes” in the data stream, etc. Here,
the secret is the URL of the web site whose encrypted traffic is being intercepted
by the attacker, and the public outputs are the characteristics of the encrypted
traffic that the attacker is able to observe.

Such an attack has previously been mounted against Tor [8], using Weka to
fingerprint encrypted traffic with a 54% success rate; since fingerprinting the web
site is possible, clearly a leak exists. We generated a dataset by accessing each of
the Alexa top 500 web sites ten times through a Tor node and recording features
of the encrypted traffic. leakiEst ranks them and identifies which features (or
sets of features) leak information. Existing machine learning tools (e.g., Weka)
can be configured to select features based on mutual information but, uniquely,
leakiEst estimates a confidence interval for each measure of mutual information,
ranks the features in the dataset by reliability, and identifies the features that
do not leak information. leakiEst’s analysis showed that a web site is most easily
fingerprinted by the number of spikes in the data stream. It also showed that
some features suggested by previous authors, such as the average packet size, do
not contain any useful information; we verified this by removing these features
from the dataset and rerunning the classification in Weka, and observed no drop
in the identification rate.
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